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Abstract Body

Background / Context:

Haertel et al. (2012) recently reviewed the impaetaof knowing learning trajectories as a
means for educators to make better “instructioealsions regarding the sequencing of ...
skills.” They point out that knowing intermedigieficiency levels and how students are likely
to pass through them would be useful to educatmisyat few of these learning trajectories have
been defined. This is largely due to the fact thate are few dynamic models that education
researchers can use to track student trajectories.

We introduce a model to incorporate learning ovaltipie time points into the cognitive
assessment framework. In order to extend thisdveonk to be dynamic, we expand the static
likelihood function to account for time. We thertroduce the Parameter Driven Process for
Change + Cognitive Diagnosis Model (PDPC + CDM;d8tu2012) which can be used as part
of this framework. We implement the model on b&ithulated and real data sets. In particular,
we apply PDPC + CDM to a data set with a pre ared {@st. The intervention exposes native
Chinese speakers who are learning English to aitbegtutor aimed to teach English article
rules (Chan, 2012). In this scenario, the modshfiell and we are able to detect high rates of
learning where 92% of students transitioned togadn proficiency state.

Purpose/ Objective/ Research Question / Focus of Study:

Our goal is to employ dynamic cognitive diagnosmdels (CDM; Junker and Sijtsma, 2001;
Rupp and Templin, 2008) to account for learninguréntly, repeated measures data in the
education field is typically modeled using statigtitechniques like a paired t-test, repeated
measures ANOVA or ANCOVA, or hierarchical linear dets. However, these techniques
suffer two drawbacks. First, the dependent vagiabkeach of these techniques is a sum score.
Therefore, they do not consider item propertiesmmegathat we lose information if students do
not answer the same items as one another andratieecpoint. The second drawback is that
these techniques tell us about learning on avdsageot for an individual student. These
concerns have been addressed in the static cagp@BIM. Previous attempts to create
dynamic cognitive assessment models are eithehhsglecific to the situation for which they
were created (e.g. Anderson et al., 1995) or caatio model learning at the group as opposed
to the individual level (e.g. Cen et al., 2006;/en et al., 2005; 2008; Cho et al., 2010). We
introduce PDPC + CDM, a model that extends stal/Go account for multiple time points in
a way that is generalizable and tracks individuadient learning.

Setting:
The English Article experiment was conducted in éheof 2011 at a university in Beijing,
China that specializes in foreign language edunaia research.

Population / Participants/ Subjects:
The subjects were 64 native Chinese speakersiinfitise or second years as English majors.
Students had studied English an average of 8.5 yat were 18.5 years old on average.

Intervention / Program / Practice:

The cognitive tutor is a web-based program with él6@e task items where students choose the
appropriate article from choicés/'an’, 'the’, or @, the zero article. The rules for choosing the
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most appropriate article were split into 23 skil8kills 1 — 10 correspond #, skills 11 and 12
correspond ta’/’an’ , and skills 13 — 23 correspondtte’. Each skill was covered in twenty-
five items in the tutor except for one skill coesading to'the’ which appeared in 100 items.
Students could not advance until they correctlywamed each item. Immediate feedback was
given regardless of whether the input answer wagcb No hints were available. Students
worked in the tutor over two 60 minute sessionfiwito days between sessions.

Resear ch Design:

To assess performance, Chan (2012) administerestespimmediately before the first tutor
session and a post test immediately following #mad. Both assessments were administered
online over thirty minutes. Each item was depehdera single skill and each skill was covered
by sixteen items - eight at both pre and postftes total of 184 items at each test. Because of
the time constraint, students did not see all iteAispretest, they saw an average of 142.4 items,
with standard deviation, sd = 10.2 items. Theyexily answered an average of 67.2% (sd =
7.2%). At post test, students saw an average @f7lifems (sd = 11.1 items). They correctly
answered 85.6% (sd = 7.8%) on average. We usadeadg-test to find that the percentage
correct is significantly higher on the post testhwan average gain of 18.5%<21.9,p <

0.001). Therefore, we expect to find learning gaimen we apply PDPC + CDM.

Statistical, M easur ement, or Econometric M odel:
Our goal is to measure learning of these 23 arsikiés. To do this, we leXi = (Xi1, X2, ..., %1)
be the complete response pattern for studetiereX = (Xiu, X, ..., *v) IS the response
vector at time of theJ items. Items are graded dichotomously soXha¢quals one if student
correctly answers itefnat timet and zero otherwise. We assume that (01, 6, -..,07) is a
vector of latent student features ane (z1, Z,...,%r) IS a vector of unobserved states to describe
each student's status at each time point. In gérhis latent state can be identicabtor, as in
PDPC + CDM, an indicator of membership in lateatest that describe tléedistribution.

(please insert figure 1 here)

Regardless of the definition, we assume that tla¢ioaships between student responses
and latent states can be described by the Attisbssessment Model (Junker, 1999), a directed
acyclic graph (Wasserman, 2004) depicted in Figuré&he conditional independences inherent
in a DAG allow us to assume that observations attone point are independent of the next
given a student's latent state, Xg.[l Xi.1 | Z, that observations are independent of latentstate
given the student parameter, Q. 0z, | 6:, and the Markov property, i.2u1 O(Ze1, ..., 7) |
z:. Using these assumptions, we define a generginsdistribution which can be used as a
base to all dynamic models including PDPC + CDMhe Tikelihood is as follows:

T
P(X;,z) = P(z;1)P(Xi112i1, B) 1_[ P(zi|zie—1)P Xyl zie, B) €Y
t=2

In PDPC + CDM, we assume students are in orlatent states at each time point.
These latent states describe groups of studerftssimitilar response and/or skill patterns. We
then allow students to transition between statesrding to a time homogenous hidden Markov
model. ThenP(z,) is the initial state probability arfé(z;|z.,) is the transition probability in a
Markov chain. To defin@(X;;|z;1, ), we must first introduce CDM in more depth.

In CDM, we assume thak = (fiu, i, ...,0w) IS a skill vector wheréix equals one if
student possesses skitlat timet and zero otherwise. The distributiond@fis dependent oz,
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student's latent state at tinte Specifically, we assun,|z;; = z ~ [[K_, Bernoulli(py,)
wherepy; is the probability of knowing skilk in latent state. These probabilities define what it
means to be in each latent state and transitiondest them.

In Equation 1, we can defir(X;;|z;;, ) = X H§=1 P(Xitj10it, B) [Tk=1 P Bitxc| zie)-
We derive this equation using the following facErst,
P(Xitlzit, B) = Yo P(Xit|Oit, B)P(0;:|2ir) Where we use the law of total probability to expand
the responses to be dependent on student gkilBy the local independence assumption, we
can expand® (X;;|6;;, B) = H§=1P(Xitj|9u, B;). Finally, we assume that theskills are
independent of one another meaning @, |z;.) = [1X_1 P(Bitx|Zit)-

The probability of a successful respoR¢#;.; = 1|6;;, §;) can then be defined as any
static CDM (e.g. the NIDA, DINA, or RUM models detbed in Junker and Sijtsma, 2001). For
the article data set, we assume the NIDA model §/14099; Junker and Sijtsma, 2001) where
P(Xit; = 1|0i, Bi) = [T5=1((1 — s3) itk gy 101k ) ke this equationgy is expert defined to
equal one if iten) depends on skik and zero otherwise. Then the item featfige, (s, %), iS a
skill, as opposed to an item, parameter and iefber subscripted by, The slip probabilitys,
= P(Xyy = 0] 6w = 1), is the probability that a student incorrectlybs skillk even if he knows
it. The guess probabilitg, = P(Xi; = 1| i = 0), is the probability that a student correctly
applies skillk even though he does not know it.

With PDPC + CDM, we can estimate each studenfsdi@y through the latent state
spacegz, and the probability of knowing each skill in edatent statepy,; these probabilities
define what it means to be in each latent sthatgarticular, an education researcher could use
this information to see which skills each studeritkely to know at each time point.

Usefulness/ Applicability of Method:

Adding a dynamic component to CDM has the potettidenefit many in education research.

In particular, it will allow researchers to assegether an intervention is effective and compare
experimental conditions to find which most promiet&rning (Feng et al., 2009). In addition,
researchers could use this model to define learnapgctories which could better inform
curriculum development (Haertel, 2012). It willea¥ educators to better focus their teaching by
making explicit topics which have been learnedh®ymajority and those upon which the
teacher should dedicate more time (Anozie and Jugk@7). Finally, it will allow schools to
make better predictions about performance on erygaf accountability exams which in turn

will allow them to better prepare for the high galassessments (Ayers and Junker, 2008)

Data Collection and Analysis:
Using WIinBUGS (Lunn et al., 2000), we simulated S@lues for each parameter which we use
to calculate the median and 95% credible intervals.

(please insert figure 2 here)

Figure 2 is a summary of thg, estimates, the probability of knowing skilin latent
statez. We see that all skills except 7, 16, and 20 hayafgcantly higher probabilities in latent
state 2. In fact, 17 of the state 2 probabilitiesestimated to be exactly one. Because so many
of the probabilities in state 2 are significantlgtrer than state Jy,> pki1, we can think of
students in latent state 2 as being more profi¢lean those in latent state 1. In a simulation
built to mirror the article data set, we correahtimated 43 of the 46 (93.5%) parameters
within measurement error; this is similar to th&®&e would expect.
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We then consider the trajectory of studetttrough the latent state spage,In the
article data set, we found that all 64 studentevestimated to be in latent state 1 at the pretest
and 59 (92.2%) transitioned to latent state 2 apibst test. This indicates that the tutor was
effective at teaching Chinese speakers to use $ngtticles. In the mirrored simulation, we
were able to correctly estimate 62 of the 64 (96.8%ectories.

As a measure of confidence about the latent stsigraments, we looked at the posterior
probability of the estimated state. We found t2it/128 (94.5%) of the student time points had
posterior probability equal to one. Five of theese(71.4%) cases where the probability was
less than one were still greater than 0.95. Irstimeilated data set, no incorrectly classified
cases had posterior probability this high. Oneesttt had a particularly low posterior probability
less than 0.6. He was found to fit a profile difet from the two latent states we estimated for
the other students. In particular, at the pogf teis student answered the items depending on
half of the skills perfectly and the other halbaly 50%. This type of information would likely
have been missed using traditional analyses.

Findings/ Results:

After applying PDPC + CDM to the article data se, find that students make large proficiency
gains from pre to post test. Therefore, we coreliat the cognitive tutor is a highly effective
tool for teaching English articles to Chinese spesk In addition, we can specifically say that
59 students transition to a more proficient stateng 20 of 23 skills have a significantly higher
probability of being knowngi, > px1) and 17 are perfectly knowp = 1). Knowing the
probabilities and latent state memberships allowoisay which skills a student is likely to
know. This type of analysis could be particulanteresting for researchers as it is more
informative than traditional methods which do relt tis about individual learning or the
particular skills a student is likely to know. Withis type of knowledge, the researcher could
assess whether the 6 skills that are not estimatbd perfectly known at the post test could be
improved upon in the tutor. A teacher could use itiformation to realize that the majority of
students have learned proper usage of EnglisHemt@mnd move to other topics while possibly
providing extra support to the 5 students stiligiing.

Conclusions:
We aimed to incorporate learning into the cogniageessment framework that exists for static
assessment data. In order to accomplish this,ereeda common likelihood function for
dynamic models and introduce PDPC + CDM, a dynanadel which tracks learning indirectly
through student membership in latent states whinke dhe distributions of the student
parameter in the static portion of the model. Weatibed this model both theoretically and
empirically through application to the article da& (Chan, 2012). One limitation of this data
set is that the items are single skill. In ordetrtuly test PDPC + CDM, we need to find data that
have items with multiple skills.

In general, by adding a dynamic component to tlgnitive assessment framework, we
provide education researchers with a method t& fradividual student learning while taking
item and skill features into consideration. Iniidd, one could use a model such as this to
define learning trajectories which could lead tttdranstructional methods and sequences
(Haertel, 2012). Teachers could also use thignimdtion to better focus their lessons. One goal
for the future would be to make these models addes® researchers and teachers who can use
the results to further student learning and thie ¢ education research.
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Appendix B. Tablesand Figures
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